PLGG1, a plastidic glycolate glycerate transporter, is required for photorespiration and defines a unique class of metabolite transporters.
نویسندگان
چکیده
Photorespiratory carbon flux reaches up to a third of photosynthetic flux, thus contributes massively to the global carbon cycle. The pathway recycles glycolate-2-phosphate, the most abundant byproduct of RubisCO reactions. This oxygenation reaction of RubisCO and subsequent photorespiration significantly limit the biomass gains of many crop plants. Although photorespiration is a compartmentalized process with enzymatic reactions in the chloroplast, the peroxisomes, the mitochondria, and the cytosol, no transporter required for the core photorespiratory cycle has been identified at the molecular level to date. Using transcript coexpression analyses, we identified Plastidal glycolate glycerate translocator 1 (PLGG1) as a candidate core photorespiratory transporter. Related genes are encoded in the genomes of archaea, bacteria, fungi, and all Archaeplastida and have previously been associated with a function in programmed cell-death. A mutant deficient in PLGG1 shows WT-like growth only in an elevated carbon dioxide atmosphere. The mutant accumulates glycolate and glycerate, leading to the hypothesis that PLGG1 is a glycolate/glycerate transporter. This hypothesis was tested and supported by in vivo and in vitro transport assays and (18)O(2)-metabolic flux profiling. Our results indicate that PLGG1 is the chloroplastidic glycolate/glycerate transporter, which is required for the function of the photorespiratory cycle. Identification of the PLGG1 transport function will facilitate unraveling the role of similar proteins in bacteria, archaea, and fungi in the future.
منابع مشابه
Bile Acid Sodium Symporter BASS6 Can Transport Glycolate and Is Involved in Photorespiratory Metabolism in Arabidopsis thaliana.
Photorespiration is an energy-intensive process that recycles 2-phosphoglycolate, a toxic product of the Rubisco oxygenation reaction. The photorespiratory pathway is highly compartmentalized, involving the chloroplast, peroxisome, cytosol, and mitochondria. Though the soluble enzymes involved in photorespiration are well characterized, very few membrane transporters involved in photorespiratio...
متن کاملBending of Protonema Cells in a Plastid Glycolate/Glycerate Transporter Knockout Line of Physcomitrella patens
Arabidopsis LrgB (synonym PLGG1) is a plastid glycolate/glycerate transporter associated with recycling of 2-phosphoglycolate generated via the oxygenase activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). We isolated two homologous genes (PpLrgB1 and B2) from the moss Physcomitrella patens. Phylogenetic tree analysis showed that PpLrgB1 was monophyletic with LrgB proteins of...
متن کاملEngineering photorespiration in chloroplasts: a novel strategy for increasing biomass production.
Photosynthetic carbon metabolism is rate limiting in C3 plants because of a competing process: photorespiration. Photorespiration lowers the energy efficiency of photosynthesis by metabolizing glycolate produced by the oxygenate activity of Rubisco. The chloroplasts of Arabidopsis thaliana have recently been reported to contain a novel respiratory pathway that converts glycolate directly to gly...
متن کاملSolubilization, partial purification, and reconstitution of the glycolate/glycerate transporter from chloroplast inner envelope membranes.
The glycolate/glycerate transporter of spinach (Spinacia oleracea L.) chloroplast inner envelope membranes was solubilized by treatment of the membranes with sodium cholate. Mixtures of the cholate extracts and soy asolectin were subjected to gel filtration to remove the detergent. The reconstituted vesicles were frozen, thawed, and sonicated in a buffer that contained 10 millimolar d-glycerate...
متن کاملThe glycine decarboxylase system in higher plant mitochondria: structure, function and biogenesis.
A long period of drought leads to stomata1 closure, thus depriving most of the green cells of CO,. Under these conditions glycolate is formed rapidly inside the chloroplasts, via phosphoglycolate, from ribulose 1,s-bisphosphate by the oxygenase reaction of ribulose1,s-bisphosphate carboxylase/ oxygenase [ l , 21. The resulting glycolate is transported out of the chloroplasts to be metabolized t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 8 شماره
صفحات -
تاریخ انتشار 2013